Maintenance and termination of neocortical oscillations by dynamic modulation of intrinsic and synaptic excitability.
نویسندگان
چکیده
Mechanisms underlying seizure cessation remain elusive. The Lennox-Gastaut syndrome, a severe childhood epileptic disorder, is characterized by episodes of seizure with alternating epochs of spike-wave and fast run discharges. In a detailed computational model that incorporates extracellular potassium dynamics, we studied the dynamics of these state transitions between slow and fast oscillations. We show that dynamic modulation of synaptic transmission can cause termination of paroxysmal activity. An activity-dependent shift in the balance between synaptic excitation and inhibition towards more excitation caused seizure termination by favoring the slow oscillatory state, which permits recovery of baseline extracellular potassium concentration. We found that slow synaptic depression and change in chloride reversal potential can have similar effects on the seizure dynamics. Our results indicate a novel role for synaptic dynamics during epileptic neural activity patterns.
منابع مشابه
Soufiane Boucetta Modulation of Intrinsic and Synaptic Excitability during Sleep Oscillations and Electrographic Seizures
The present memoir provides new evidences showing the modulation of intrinsic and synaptic excitability of cortical neurons, and the consequence of this modulation on neuronal activity during both slow sleep oscillations and electrographic seizures in vivo in anaesthetized animals. We performed simultaneous recordings of cortical neurons with local field potentials in suprasylvian gyrus within ...
متن کاملSlow state transitions of sustained neural oscillations by activity-dependent modulation of intrinsic excitability.
Little is known about the dynamics and mechanisms of transitions between tonic firing and bursting in cortical networks. Here, we use a computational model of a neocortical circuit with extracellular potassium dynamics to show that activity-dependent modulation of intrinsic excitability can lead to sustained oscillations with slow transitions between two distinct firing modes: fast run (tonic s...
متن کاملDevelopmental Changes in HCN Channel Modulation of Neocortical Layer 1 Interneurons
Layer 1 (L1) interneurons (INs) play a key role in modulating the integration of inputs to pyramidal neurons (PNs) and controlling cortical network activity. Hyperpolarization-activated, cyclic nucleotide-gated, non-specific cation (HCN) channels are known to alter the intrinsic and synaptic excitability of principal components (PCs) as well as select populations of GABAergic INs. However, the ...
متن کاملThe Role of Adrenergic Receptors on Neural Excitability and Synaptic Plasticity: A Narrative Review
Adrenergic receptors have an important role in neural excitability and synaptic plasticity. Despite a lot of studies on these receptors, their exact role in brain disorders accompanied with hyperexcitability has not been determined. There are also controversies on their role in synaptic plasticity. In this review article, the important studies done in this regard have been reviewed to achieve a...
متن کاملPii: S0306-4522(99)00024-x
Oscillatory patterns in neocortical electrical activity show various degrees of large-scale synchrony depending on experimental conditions, but the exact mechanisms underlying these variations of coherence are not known. Analysis of multisite local field potentials revealed that the coherence of spindle oscillations varied during different states. During natural sleep, the coherence was remarka...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Thalamus & related systems
دوره 3 2 شماره
صفحات -
تاریخ انتشار 2005